Predicting structured objects with support vector machines
نویسندگان
چکیده
منابع مشابه
Predicting Time Series with Support Vector Machines
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two diierent cost functions for Support Vectors: training with (i) an insensitive loss and (ii) Huber's robust loss function and discuss how t o c hoose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform...
متن کاملPredicting Time Series with Support Vector Machines
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two diierent cost functions for Support Vectors: training with (i) an insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform n...
متن کاملStructured variable selection in support vector machines
When applying the support vector machine (SVM) to highdimensional classification problems, we often impose a sparse structure in the SVM to eliminate the influences of the irrelevant predictors. The lasso and other variable selection techniques have been successfully used in the SVM to perform automatic variable selection. In some problems, there is a natural hierarchical structure among the va...
متن کاملStructured Support Vector Machines for Speech Recognition
Discriminative training criteria and discriminative models are two eective improvements for HMM-based speech recognition. is thesis proposed a structured support vector machine (SSVM) framework suitable for medium to large vocabulary continuous speech recognition. An important aspect of structured SVMs is the form of features. Several previously proposed features in the eld are summarized in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the ACM
سال: 2009
ISSN: 0001-0782,1557-7317
DOI: 10.1145/1592761.1592783